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Abstract 

Microbial polysaccharides, as a class of natural compounds, represent one of the primary active 

ingredients produced by microorganisms. Due to their unique chemical structures, microbial 

polysaccharides exhibit diverse biological activities such as anti-tumor, antiviral, antibacterial, 

and immunomodulatory effects, demonstrating immense potential for applications in various 

fields including medicine, food, and cosmetics. In recent years, microbial polysaccharides have 

garnered increasing attention from researchers. This article comprehensively reviews the 

advancements in the extraction techniques, purification methods, and biological activity 

research of microbial polysaccharides. Additionally, it enumerates some recent applications and 

development prospects of microbial polysaccharides across various sectors. This 

comprehensive overview aims to provide insights into the discovery of more high-quality 

microbial polysaccharide resources, elucidate the intrinsic relationship between polysaccharide 

structure and function, reveal the mechanisms of polysaccharide bioactivity, and facilitate 

further exploitation and utilization of microbial polysaccharides. 
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1. Introduction  

Polysaccharides are a class of polymer 

carbohydrates widely present in plants, fungi, 

algae and bacteria, and their molecular 

structure is composed of multiple 

monosaccharide molecules connected by 

glycosidic bonds, which has a high degree of 

complexity and diversity, and is one of the 

most important active components of 

organisms, with obvious biological activities 

such as antitumor (1), antiviral (2), 

anticoagulation (3), immunomodulatory (4) 

and neuroprotective (5). Polysaccharides are 

numerous and diverse, and can be divided 

into microbial polysaccharides, plant 

polysaccharides, and animal polysaccharides 

according to their sources (6). However, due 

to the obvious difference between the growth 

environment and metabolic pathways of 

microorganisms and animals and plants, the 

polysaccharides produced by them often have 

the characteristics of novel structure and 

diverse activities. In addition, microbial 

polysaccharides feature high controllability in 

production processes, no influence from 

external factors, short production cycles, and 

relatively low production costs. They can be 

produced in batches through fermentation for 

industrialization and are safe and non-toxic. 

Therefore, microbial polysaccharides have 

become an important source of new drugs (7). 

The extraction and purification processes of 

microbial polysaccharides are complex and 

diverse. To ensure the extraction efficiency 

and purity of polysaccharides, different 

extraction methods are required for different 

polysaccharide types and microbial sources. 

In terms of biological activity, microbial 

extracellular polysaccharides exhibit various 

biological activities, such as antioxidant, 

antitumor, and antibacterial effects. These 

biological activities make microbial 

polysaccharides have broad application 

prospects in the fields of medicine and health 

care. This article mainly reviews the 

extraction, separation, purification, and 

biological activities of microbial 

polysaccharides, aiming to provide a 

theoretical basis for the further development 

and utilization of microbial polysaccharides. 

2. Extraction and purification of 

microbial polysaccharides 

2.1  Extraction  

With the development of technology, many 

methods for extracting polysaccharides from 

microorganisms have been reported. Table 1 

shows the advantages and disadvantages of 

different methods for extracting microbial 

polysaccharides. 

Hot water extraction method is simple, easy 

to control, and is a classic method to extract 

polysaccharides from natural resources (8). In 

short, an appropriate amount of hot water is 

added, with the temperature controlled at 80-

100℃, and the extraction is carried out for 1-

3 hours. In order to improve the extraction 

rate of polysaccharides, multiple extractions 

can be performed. After filtering the extract to 

remove impurities, crude polysaccharides can 

be obtained by ethanol precipitation. It should 

be noted that high temperature may lead to 

partial degradation or structural changes of 

polysaccharides, affecting their biological 

activity and function. 

Organic solvent extraction of polysaccharides 

is also a commonly used method. The 

principle of this method is to add organic 

solvents to the fermentation broth, which can 

reduce the solubility of polysaccharides, 

thereby causing polysaccharides to precipitate 

or coagulate. Ethanol, acetone, etc. are the 

most commonly used organic solvents for 

extracting microbial polysaccharides, among 

which ethanol is the most widely used. When 

ethanol is added to the fermentation broth, as 

the concentration of ethanol in the solution 

increases, the solubility of polysaccharides 

gradually decreases, forming a precipitate. At 
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present, the ethanol precipitation method has 

been widely used in the extraction of 

microbial polysaccharides (9,10). 

Ultrafiltration, as a new membrane separation 

technique, relies primarily on sophisticated 

microporous membranes to effectively 

separate substances based on their molecular 

weight, achieving the purpose of isolating 

components of varying molecular masses. 

Compared to traditional separation methods, 

ultrafiltration boasts remarkable advantages: 

it swiftly and easily extracts extracellular 

polysaccharides from fermentation broth, 

minimizing disruption to the polysaccharides' 

biological activities and preventing the 

deactivation of heat-sensitive biomolecules. 

Furthermore, ultrafiltration is characterized by 

low energy consumption and minimal 

material loss, making it a favored approach 

among researchers in the field of 

polysaccharide extraction and separation (11). 

In the extraction of fungal polysaccharides, 

enzyme-assisted extraction method is widely 

utilized due to their ability to hydrolyze the 

cell wall matrix of fungi. Commonly used 

enzymes include cellulase, trypsin, papain, 

and others. However, the application of 

enzymatic extraction is subject to various 

constraints, as changes in temperature, pH, 

and enzyme concentration can all affect 

enzyme activity. Furthermore, the relatively 

high cost of enzymes poses an additional 

challenge. These factors collectively 

constitute the primary challenges of enzyme-

assisted extraction methods and contribute to 

the difficulty in scaling up this approach for 

large-scale applications (12).  

Furthermore, spray drying boasts rapid heat 

transfer, fast water evaporation, and short 

drying time, and has been employed in the 

extraction and separation of certain bioactive 

substances(13). The acid-base extraction 

method, on the other hand, utilizes acids (such 

as HCl) or bases (such as NaOH) to disrupt 

cell walls, thereby releasing polysaccharides 

within the cells (14). The ultrasonic-assisted 

extraction method harnesses the cavitation 

effect of ultrasonic waves to facilitate the 

rupture of cell walls and the release of 

polysaccharides, thereby enhancing yield and 

efficiency (15). Parameters such as the power, 

frequency, and duration of ultrasonic waves 

may potentially affect polysaccharide yield, 

necessitating optimization based on specific 

conditions. 
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Table 1: Comparison of microbial polysaccharide extraction methods 1 

Method Advantage Disadvantage Application examples 

Ultrafiltration 

 

Efficient, fast, low energy 

consumption and low loss of 

biological activity. 

The requirements for equipment are high 

and the cost is high. 
Grifolan (16) 

Spray drying method 
Fast heat transfer and short drying 

time. 

It is easy to cause local overheating and 

affect the activity of polysaccharides. 

Poria cocos mycelium 

exopolysaccharides(13)  

Organic solvent 

precipitation method 
Easy to operate and low cost. 

Organic solvents are volatile, the dosage is 

large, and the extraction rate is not high. 

Rhodococcus erythropolis 

HX-2 exopolysaccharides (9) 

Hot water method Easy to operate and easy to control. 

High temperature may cause degradation 

and structural changes of some 

polysaccharides. 

Morchella esculenta 

polysaccharides (17) 

Alkali extraction 

method 
High yield. 

The processing time is long, the temperature 

is high, the polysaccharides are degraded, 

and the molecular weight is reduced. 

Termitomyces eurhizus 

polysaccharides (18) 

Acid extraction 

method 
High yield. 

The time is long, the temperature is high, the 

polysaccharide is degraded, and the 

molecular weight is reduced. 

Pleurotus ostreatus 

mushrooms polysaccharides 

(19) 

Ultrasound-assisted 

extraction 

The extraction time is short, the 

energy consumption is low, the 

extraction rate is high, and the 

operation is simple. 

The temperature rise is difficult to monitor, 

and the molecular weight of polysaccharides 

is reduced. 

Streptomyces sp. A5 

polysaccharides (20) 

Enzyme-assisted 

extraction 

The reaction conditions are mild, the 

extraction efficiency is high, and the 

product is not easy to deteriorate. 

Enzymes are expensive and easily 

inactivated. 

Termitomyces albuminosus 

polysaccharides (21) 

2 
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2.2 Isolation and purification of microbial 

polysaccharides 

 

The crude polysaccharides obtained after 

crude extraction from microorganisms often 

contain impurities such as proteins, pigments, 

and lipids, which may adversely affect the 

analysis of physicochemical properties, 

structural identification, and biological 

activity assessment of polysaccharides. 

Therefore, it is necessary to remove the 

impurities from crude polysaccharides (22). 

Common methods for removing impurities 

from microbial crude polysaccharides is 

shown in Figure 1. In the process of removing 

impurities from microbial polysaccharides,  

the removal of proteins is crucial. Commonly 

used methods for deproteinization include 

trichloroacetic acid (TCA) method, 

trifluorotrichloroethane method, enzymatic 

hydrolysis method, and Sevag method. The 

TCA method involves adding trichloroacetic  

 

acid to the crude polysaccharide solution, 

causing proteins to denature and precipitate 

for removal. However, due to the strong 

acidity of trichloroacetic acid, it can not only 

denature proteins but also hydrolyze 

polysaccharide chains, ultimately resulting in 

significant polysaccharide loss (23). The 

trifluorotrichloroethane method involves 

mixing the crude polysaccharide solution with 

an equal volume of trifluorotrichloroethane, 

stirring for 10 minutes, and then centrifuging 

to obtain the upper aqueous layer. This 

process is repeated twice to remove proteins 

from the crude polysaccharides. While this 

method is relatively efficient, the solvent 

trifluorotrichloroethane is a volatile liquid, 

making it unsuitable for large-scale industrial 

production. The trifluorotrichloroethane 

Figure 1 Methods for removing impurities from microbial crude polysaccharides. 

A: methods for removing pigment; B: methods for removing protein; C: methods for removing 

lipid.  
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method involves mixing the crude 

polysaccharide solution with an equal volume 

of trifluorotrichloroethane, stirring for 10 

minutes, and then centrifuging to obtain the 

upper aqueous layer. This process is repeated 

twice to remove proteins from the crude 

polysaccharides. While this method is 

relatively efficient, the solvent 

trifluorotrichloroethane is a volatile liquid, 

making it unsuitable for large-scale industrial 

production (24). The enzymatic method 

primarily utilizes a suitable concentration of 

protease to specifically degrade proteins 

within crude polysaccharide solutions. 

Common enzymes employed include trypsin 

(25), papain (26), and pepsin (27). This 

approach boasts mild reaction conditions, 

effectively preventing damage to the 

polysaccharide structure while preserving its 

biological activity. However, its limitation is 

the inability to completely remove all proteins 

from the polysaccharides. The Sevag method 

is the most commonly used approach for 

protein removal. It is mixed chloroform and 

butanol in a 4:1 ratio and added this mixture 

to the crude polysaccharide solution. By 

vigorous shaking, the proteins in the sample 

are denatured into an insoluble state, followed 

by centrifugation to remove them, thereby 

achieving the purpose of removing proteins 

and purifying polysaccharides (28). Although 

this method has a relatively low efficiency in 

removing proteins, often requiring repetition 

of the process three times or more to achieve 

satisfactory results, its mild process 

conditions have minimal impact on the 

polysaccharide structure, avoiding 

polysaccharide denaturation. As such, it is 

highly favored in scientific research. 

After removing proteins from crude 

polysaccharides, the resultant mixture still 

comprises various substances with diverse 

relative molecular weights. To obtain 

fractions with a uniform distribution of 

relative molecular masses, further purification 

of the polysaccharides is necessary. 

Commonly employed methods for this 

purpose include precipitation using quaternary 

ammonium salts, membrane separation 

techniques, and column chromatography. The 

quaternary ammonium salt precipitation 

method leverages the unique property of 

quaternary ammonium salts, which, when 

their pH is below 9, can interact with acidic 

polysaccharides, forming precipitates that can 

be readily separated, thereby isolating the 

acidic polysaccharides effectively. Membrane 

separation technology embodies a highly 

selective process, where a mixture of 

molecules with varying particle sizes is 

passed through a semipermeable membrane, 

enabling the achievement of selective 

separation based on their size. Column 

chromatography is the most classic 

purification method, including macroporous 

resin column chromatography, gel filtration 

chromatography, and ion exchange column 

chromatography (29). In many cases, it is 

difficult to obtain polysaccharide components 

with good homogeneity by purifying crude 

polysaccharides by only one method, so two 

or more methods are generally used for 

purification to obtain components with higher 

purity. For example, Cao et al. (30) used 

DEAE-Sepharose Fast Fiow ion exchange 

column chromatography to purify crude 

polysaccharides from Lactobacillus plantarum 

and further purified them by Seph-arose CL-

6B gel column chromatography, resulting in 

many single-component exopolysaccharides 

with high sugar content. 

3. Biological activities of microbial 

polysaccharides 

As natural products, microbial 

polysaccharides exhibit a variety of biological 

activities, with the currently proven ones 

including antioxidant, antitumor, antiviral, 

and immunomodulatory effects (Figure 2). 
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3.1 Immunomodulatory activity 

It is well known that abnormalities in the 

immune system can lead to the development 

of a variety of diseases. Many studies have 

shown that microbial polysaccharides have 

immunomodulatory effects. Neumann et al. 

(31) found that the synergistic effect of 

bacterial lipopolysaccharide (LPS) and 

macrophage activating factor can increase the 

number of macrophages induced and enhance 

the phagocytic ability of macrophages. Zhu et 

al. (32) studied the effect of zymosan on the 

function of immune in mice. The results 

showed that zymosan significantly promoted 

the proliferation of splenic lymphocytes and 

the secretion of cytokines in mice, and there 

was a clear dose-effect relationship between 

the proliferation effect, the secretion of 

cytokines, and the concentration of zymosan. 

Guo et al.(33) found the exopolysaccharide 

Ebosin produced by Streptomyces sp. 139, not 

only could improve the inflammatory 

response of LPS-induced keratinocytes 

through the IKK / NF-kapaB pathway, but 

also reduce psoriatic skin damage and reduce 

the expression of imiquimod (IMQ) -mediated 

inflammatory factors in psoriasis mice. The 

experimental results of Li et al. (34) showed 

that Bifidobacterium EPS promoted the 

proliferation of splenic lymphocytes, 

significantly increased the serum half 

hemolytic value (HC50) of mice, and 

stimulated the production of serum antibodies 

in mice. In addition, the immunoregulatory 

effects of Bifidobacterium EPS on T and B 

lymphocytes showed a certain dose-dependent 

relationship. It could not only selectively 

enhance the activity of suppressive 

lymphocytes, but also improve the function of 

T helper lymphocytes by enhancing the 

activity of B lymphocytes, ultimately 

enhancing both specific and non-specific 

immune activities.  
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3.2 Antioxidant activity  

Excessive accumulation of superoxide 

radicals and lipid peroxides in the body can 

cause continuous damage to cells, ultimately 

leading to cell aging, apoptosis, and 

carcinogenesis. Microbial polysaccharides can 

play an antioxidant role by increasing the 

activity of superoxide dismutase, scavenging 

free radicals, and resisting lipid peroxidation.        

Liu et al. (35) found that the 

exopolysaccharides of Lactobacillus 

paracasei and Lactobacillus plantarum 

exhibited ferrous ion chelating capacities of 

54.18% and 29.34% respectively at a 

concentration of 10 mg/mL, demonstrating 

anti-lipid peroxidation effects. Xu et al. (36) 

discovered that the exopolysaccharide EPSa 

of Bifidobacterium animalis RH showed  

 

 

 

excellent performance in antioxidant tests, 

with its anti-lipid peroxidation activity and 

free radical scavenging ability surpassing that 

of ascorbic acid, and also inhibited 

erythrocyte hemolysis in a concentration-

dependent manner. Ghareeb et al.(37) 

extracted an acidic exopolysaccharide (EPS) 

from the marine Streptomyces 

vinaceusdrappus strain AMG31 and 

demonstrated that it possesses significant 

antioxidant properties. Specifically, it 

efficiently scavenged 93.8% of DPPH radicals 

and exhibited potential efficacy in combating 

Alzheimer's disease by significantly inhibiting 

butyrylcholinesterase activity, especially at a 

concentration of 100 μg/ml, where it attains a 

maximum inhibition rate of 84.5%. Pan et 

al.(38) isolated and purified an extracellular 

polysaccharide (EPS-1) from L. lactis subsp. 

Figure 2 Biological activities of microbial polysaccharides 
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lactis 12 and evaluated its antioxidant 

capacity. The results indicated that EPS-1 

exhibited remarkable antioxidant activity, 

with its total antioxidant capacity, superoxide 

anion scavenging ability, and hydroxyl radical 

scavenging ability all increasing with 

concentration. This discovery not only reveals 

the potential of EPS-1 in reducing oxidative 

damage but also provides a scientific basis for 

its healthy applications in functional foods 

and antioxidants.  

3.3 Antitumor activity 

Tumor is a disease in which cell proliferation 

is out of control, abnormal differentiation, and 

abnormal apoptosis. At present, many tumor 

treatment methods used in clinical practice 

have great toxic side effects on the body (39), 

therefore, it is very important to develop non-

toxic new anti-tumor drugs. Li et al. (40) 

extracted polysaccharides from the 

fermentation broth of marine Bacillus sp. 

QLc-04 and studied their ability to inhibit 

HeLa cells. When the concentration reached 

500 mg/mL, the inhibition rate of HeLa cell 

proliferation was as high as 62.25%, but the 

mechanism of inhibiting cancer cell 

proliferation remains to be further explored. 

Ma et al. (41) screened the extracellular 

polysaccharide component (REPS2-A) of 

Rhodotorula mucilaginosa to evaluate its 

potential inhibitory effects on 10 common 

cancer cells. The results showed that the 

extracellular polysaccharide component 

REPS2-A could arrest the liver cancer cell 

cycle at the G1/S phase, thereby hindering 

further cell division and proliferation. 

Additionally, this polysaccharide component 

also triggered the apoptosis process of liver 

cancer cell Hep G2, displaying a significant 

dose-dependent effect. The aforementioned 

discoveries regarding the inhibition of cancer 

cell proliferation by microbial 

polysaccharides have provided new 

perspectives and potential candidate drug 

molecules for the field of cancer treatment, 

which carry significant scientific importance 

and clinical application prospects. 

3.4 Antiviral activity 

Microbial polysaccharides can exert antiviral 

effects by activating immune cells, inducing 

the production of proinflammatory cytokines 

and chemokines, among other mechanisms. 

Arena et al. (42) demonstrated that a 

polysaccharide, EPS-2, secreted by 

Geobacillus thermodenitrificans strain B3-72, 

can interfere with the replication of herpes 

simplex virus type 2 (HSV-2) in human 

peripheral blood mononuclear cells (PBMCs), 

effectively suppressing viral proliferation. 

Further analysis revealed that a series of 

essential immunoregulatory factors, including 

IL-18, IL-12, IFN-α, IFN-γ, and TNF-α, were 

significantly present and upregulated in the 

culture supernatants of PBMCs. The 

synergistic action of these cytokines and 

chemokines enhances the antiviral immune 

response of host cells. KANMANI et al. (43) 

confirmed that the extracellular 

polysaccharide (EPS) produced by 

Lactobacillus delbrueckii subsp. bulgaricus 

TUA4408L can significantly enhance the 

ability of porcine intestinal epithelial cells to 

resist rotavirus infection, primarily by 

inhibiting viral replication within the cells. 

Furthermore, they revealed that EPS activates 

the antiviral innate immune response of host 

cells by regulating the Toll-like receptor 3 

(TLR3) immune signaling pathway, thereby 

strengthening the defense mechanism. 

Meanwhile, Kim et al. (44) also demonstrated 

that the EPS produced by Lactobacillus 

plantarum LRCC5310 exhibits marked anti-

rotaviral activity. Its mechanism of action 

primarily involves reducing the duration of 

diarrhea, inhibiting pathological changes in 

intestinal epithelial tissue, and decreasing 

rotavirus replication in the intestine, 

ultimately weakening the virus's 
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pathogenicity. Therefore, microbial 

polysaccharides, through their unique 

immunomodulatory mechanisms, exhibit 

significant antiviral activity, providing 

valuable natural resources and research clues 

for the development of novel antiviral 

therapies. 

3.5 Other biological activities  

Apart from the biological activities such as 

immunomodulation, antitumor, antioxidant, 

and antiviral effects, microbial 

polysaccharides also possess other biological 

activities. For instance, the exopolysaccharide 

(EPSS5) produced by Streptomyces rochie 

strain OF1 exhibited antibacterial activity 

against Klebsiella pneumoniae, methicillin-

resistant Staphylococcus aureus (MRSA), and 

Escherichia coli(45). Exopolysaccharides 

(EPS) from lactic acid bacteria can 

effectively inhibit the growth of Enterobacter 

sakazakii, Escherichia coli, Listeria 

monocytogenes, Staphylococcus aureus, 

Candida albicans, Yersinia pestis, and 

Salmonella typhimurium (46-49), exhibiting 

certain antibacterial activities. The research 

by DINIC'M et al. (50) revealed that the 

extracellular polysaccharide (EPS) produced 

by Lactobacillus plantarum BGCG11 can 

elevate the expression levels of the anti-

inflammatory cytokines IL-6 and IL-10, 

demonstrating high anti-inflammatory activity 

in rats. Kiho et al. (51) extracted a 

polysaccharide, CS-F10, from the mycelium 

of the Cordyceps sinensis fungus, which 

showed hypoglycemic activity. It can reduce 

the level of glucose transporter GLUT2 

protein in the liver, thereby inhibiting hepatic 

glucose output and ultimately reducing blood 

glucose to normal levels. The research 

conducted by Shao et al. (52)has shown that 

the exopolysaccharide PJ1-1, extracted from 

the mangrove-endophytic fungus Penicillium 

janthinellum N29, possesses significant 

effects in lowering blood glucose levels and 

improving glucose tolerance. Furthermore, 

PJ1-1 can effectively reduce the levels of total 

cholesterol, triglycerides, and low-density 

lipoprotein cholesterol in the serum, while 

simultaneously increasing the level of high-

density lipoprotein cholesterol in the serum, 

thereby contributing to the alleviation of 

dyslipidemia. Keerthi et al. (53) found that the 

EPS from Lactobacillus plantarum BR2 can 

reduce cholesterol by 45%. 

4. Applications of several important 

microbial polysaccharides 

Due to their various activities, microbial 

polysaccharides have been widely used in 

food, medical, healthcare, and industrial 

industries. For example, Xanthan Gum 

produced by Xanthomonas campestris has 

been widely used in papermaking and textile 

industries due to its excellent thickening, 

suspending, and stabilizing properties, which 

can improve the processing performance and 

final product quality of paper and textiles 

(54). Pullulan possesses numerous superior 

properties such as film-forming ability, 

oxygen barrier, biodegradability, and stability, 

all while being safe and non-toxic (54,55). In 

the food industry, it finds extensive 

applications in preservation, quality 

enhancement, thickening, shaping, and as an 

edible packaging material. Within the medical 

sector, pullulan is utilized as anticoagulant 

medical materials, hemostatic agents, capsule-

forming agents, and suture threads for wound 

closure. Additionally, in cosmetics, it is 

incorporated into products like lotions, facial 

masks, skin protectants, and hair styling 

agents. Gellan Gum has been widely used in 

candies (56), fruit juice (57,58) and other 

foods. In addition, it has also been applied in 

the fields of slow drug release (59,60) and 

microbial culture medium (61).  

In addition, many microbial polysaccharides 

have been used clinically as anti-tumor drugs. 
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For example, lentinan has been made into 

anti-cancer injections and used in 

combination with chemotherapy drugs (such 

as FT) for the treatment of patients with 

gastrointestinal tumors. China and Japan have 

been able to produce and widely use them 

(62). Hericium erinaceus polysaccharide is 

widely used in the preparation of compound 

fungal polysaccharide preparations and 

traditional Chinese medicine compound 

preparations to protect gastric mucosa, 

effectively treat atrophic gastritis and combat 

Helicobacter pylori infection (63). In 

addition, the addition of Hericium erinaceus 

polysaccharide to the feed can improve the 

utilization of nutrients and promote the 

growth of broilers (64), reduce the deposition 

of cholesterol in the liver and abdomen of 

broilers, and increase the level of high-density 

lipoprotein cholesterol (65,66), opening up a 

new path for the production of healthy 

chicken products with low fat and low 

cholesterol. The above results indicate the 

broad application prospects and far-reaching 

influence of Hericium erinaceus 

polysaccharide in the livestock and poultry 

breeding industry. 

5. Conclusion and Prospect 

This paper comprehensively reviews the 

methods of extraction, isolation, and 

purification of microbial polysaccharides, 

their biological activities, as well as the 

current application status of some microbial 

polysaccharides. As mentioned above, 

microbial polysaccharides have demonstrated 

extensive application potential and enormous 

market value in various fields such as food, 

medical treatment, and healthcare. However, 

despite the significant progress made in the 

research of microbial polysaccharides, their 

true application value has not been fully 

realized. Therefore, further research and 

development of microbial polysaccharides 

hold vital practical significance and 

application value.    

Microbial exopolysaccharides (EPS) exhibit 

broad development prospects due to their 

diverse biological activities, making in-depth 

research on them highly significant. 

Microorganisms are widely distributed in 

water, soil, and even within animals and 

plants, with many new species yet to be 

discovered. These new species often serve as 

potential sources of novel biologically active 

secondary metabolites(67). Especially in 

special environments such as deserts, deep 

seas, and volcanoes, microbial EPS may form 

novel structures and possess special functions, 

harboring immense developmental potential. 

Therefore, exploring microorganisms in these 

special environments can be considered. The 

biological activity of EPS is closely related to 

its structure, with activity not only depending 

on the quantity of molecules but also 

influenced by the degree of branching and 

conformation(68). Consequently, 

characterizing the structure of polysaccharides 

and delving into the chemical structure and 

composition of microbial EPS, particularly 

focusing on the characteristics of chemical 

structures such as glucan, galactan, and 

amide, is crucial for understanding their 

functions and applications. In the medical 

field, by revealing the molecular mechanisms 

of disease occurrence, researchers can design 

drugs targeting specific sites, thereby 

enhancing treatment efficacy and reducing 

side effects. EPS, as a class of biologically 

active biopolymers with diverse activities, 

have not fully elucidated molecular 

mechanisms underlying their bioactivity. In 

research, protein interactions and signaling 

pathways are two core directions. Exploring 

the interactions between microbial EPS and 

proteins through molecular biological 

methods can reveal the mechanisms of 

interaction between EPS and cells and their 

roles in physiological functions. Meanwhile, 
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research on signaling pathways can also 

effectively uncover the mechanisms by which 

EPS function within cells.  Utilizing research 

tools in molecular biotechnology and cellular 

signal transduction, we can deeply explore the 

signaling pathways between EPS and host 

cells, revealing fundamental biological 

mechanisms and providing important 

foundations for further research and 

development of microbial polysaccharides. 

In the current era of increasingly scarce 

resources, deeply exploring microbial 

polysaccharides from different sources is not 

only an effective utilization of natural 

resources but also a key to promoting the 

sustainable development of related industries. 
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